[Crypto] Initialization
We are given:
- plaintext messages
[
'This is some public information that can be read out loud.',
'No one can crack our encryption algorithm.',
'HTB{?????????????????????????????????????????????}',
'Secret information is encrypted with Advanced Encryption Standards.',
]
- their ciphertext equivalent
76ca21043b5e471169ec20a55297165807ab5b30e588c9c54168b2136fc97d147892b5e39e9b1f1fd39e9f66e7dbbb9d8dffa31b597b53a648676a8d4081a20b
6ccd6818755214527bed6da3008600514bad4d62ac83c1c9417ca3136fc97d146d96b3f8cc910a199ed2fc4093b8dcff
6af60a0c6e5944432af77ea30682076509ae0873e785c79e026b8c1435c566463d8eadc8cecc0c459ecf8e75e7cdfbd88cedd861771932dd224762854889aa03
71c72b057e43145874e522b21f86175304ac1879ffc6cac45077aa1772c377147b93a0ff9eb91a0792929923f19e9f97cee2af1f0d7e53bd0c1a18ea28e3c57fd718b40f5d2c0014a3dbe6a3e5654fe8
- the algorithm encrypting the messages into the ciphertext
#!/usr/bin/env python3
import os
from Crypto.Util import Counter
from Crypto.Util.Padding import pad
from Crypto.Cipher import AES
class AdvancedEncryption:
def __init__(self, block_size):
self.KEYS = self.generate_encryption_keys()
print(self.KEYS)
self.CTRs = [Counter.new(block_size) for i in range(len(MSG))] # nonce reuse : avoided!
print(self.CTRs)
def generate_encryption_keys(self):
keys = [[b'\x00']*16] * len(MSG)
for i in range(len(keys)):
for j in range(len(keys[i])):
keys[i][j] = os.urandom(1)
return keys
def encrypt(self, i, msg):
key = b''.join(self.KEYS[i])
ctr = self.CTRs[i]
cipher = AES.new(key, AES.MODE_CTR, counter=ctr)
return cipher.encrypt(pad(msg.encode(), 16))
def main():
AE = AdvancedEncryption(128)
for i in range(len(MSG)):
ct = AE.encrypt(i, MSG[i])
print(ct.hex())
with open('output.txt', 'w') as f:
for i in range(len(MSG)):
ct = AE.encrypt(i, MSG[i])
f.write(ct.hex()+'\n')
if __name__ == '__main__':
with open('messages.txt') as f:
MSG = eval(f.read())
main()
This algorithm is using AES Counter mode. Reusing the same key and nonce across different message leads to the ability to decrypt messages. This is what we exploit here.
The final exploit takes 2 ciphertexts, and XOR them together. Since the same key is reused it is equivalent to the corresponding 2 plaintext messages XORed. What is left to do is to XOR again with the known plaintext to get the unknown one. This is very similar to another HTB challenge.
#!/usr/bin/env python3
import binascii
from pwn import xor
with open('output.txt', 'r') as output:
ciphertexts = output.read().split("\n")
with open('messages.txt', 'r') as message:
messages = eval(message.read())
encrypted_flag = binascii.unhexlify(ciphertexts[2].strip())
encrypted_test = binascii.unhexlify(ciphertexts[0].strip())
test = messages[0]
blob = xor(encrypted_test, encrypted_flag)
flag = xor(blob, test[:len(encrypted_flag)])[:len(encrypted_flag)]
print(flag)
Which gives
$ python reverse.py
b'HTB{unpr0t3cted_bl0ckch41n_s3cur1ty_p4r4m3t3rs!!!}\x0e\x0e\x0e\x0e\x0e\x0e\x0e\x0e\\`a{(a'